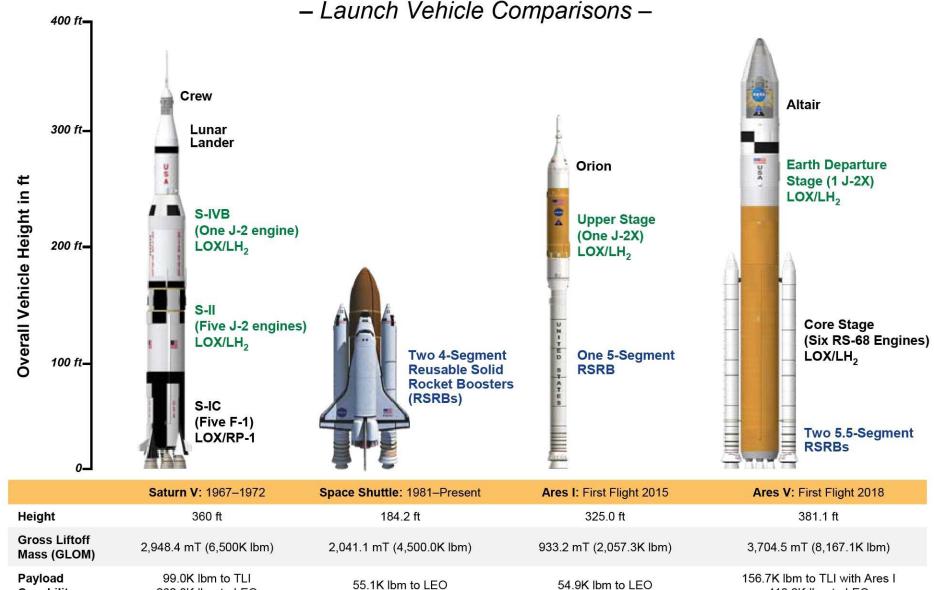


Heavy Lift for National Security: The Ares V

Phil Sumrall Advanced Planning Manager **Ares Projects** NASA MSFC

Space and Missile Defense Conference and Exhibition August 12-14, 2009

Introduction



- ◆ The NASA Ares Projects Office is developing the launch vehicles to move the United States and humanity beyond low earth orbit
- Ares I is a crewed vehicle, and Ares V is a heavy lift vehicle being designed to launch cargo into LEO and transfer cargo and crews to the Moon
- ◆ This is a snapshot of development and capabilities. Ares V is early in the requirements formulation stage of development pending the outcome of the Review of U.S. Human Space Flight Plans Committee and White House action.
- The Ares V vehicle will be considered a national asset, creating unmatched opportunities for human exploration, science, national security, and space business

Building on 50 Years of Proven Experience

262.0K lbm to LEO

Capability

413.8K lbm to LEO

Ares V Elements

Stack Integration

- 3,704.5 mT (8,167.1K lbm) gross liftoff mass
- 116.2 m (381.1 ft) in length

Payload Fairing

oiter Skirt

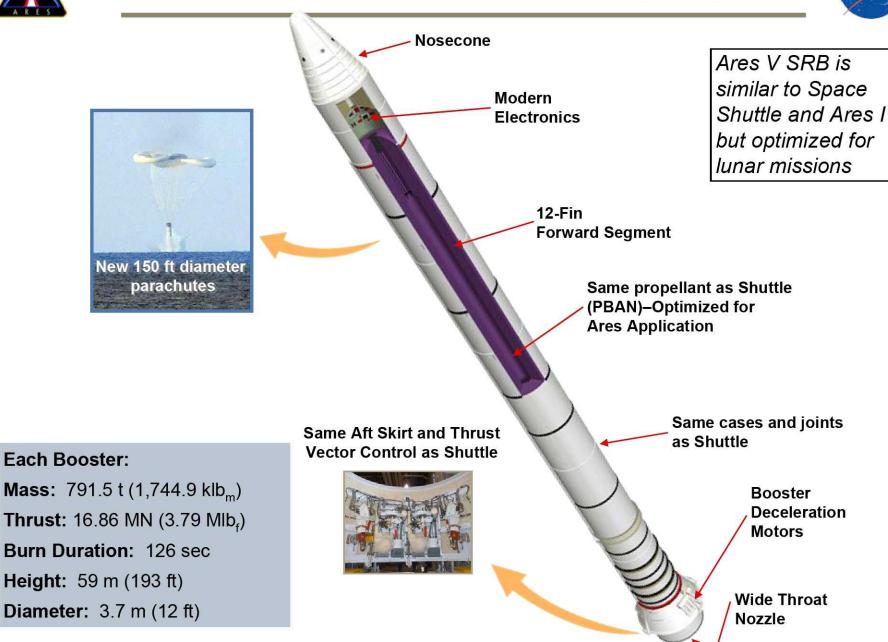
Interstage

Earth Departure Stage (EDS)

- One Saturn-derived J-2X LOX/LH₂ engine (expendable)
- 10-m (33-ft) diameter stage
- Aluminum-Lithium (Al-Li) tanks
- Composite structures, instrument unit and interstage
- Primary Ares V avionics system

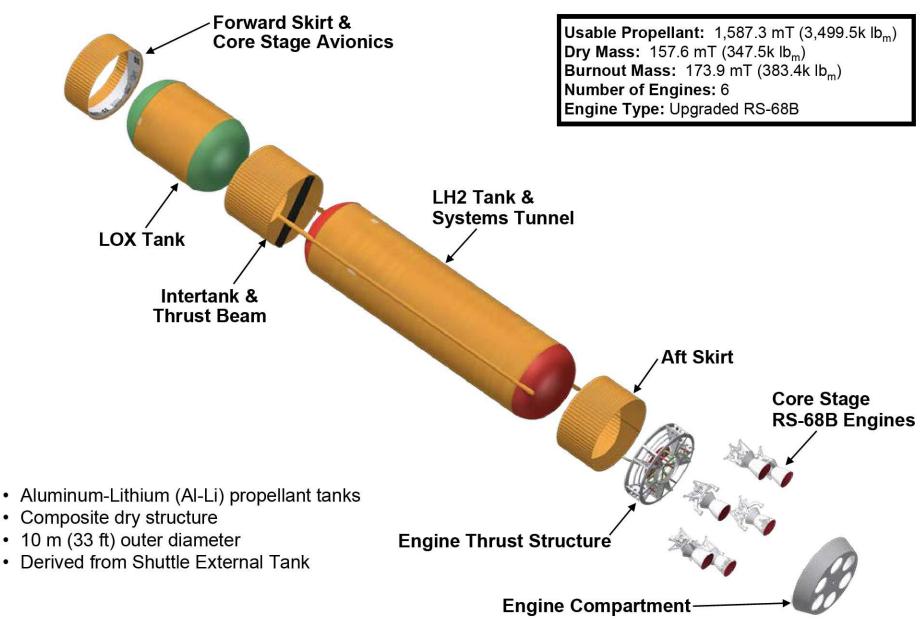
Solid Rocket Boosters

• Two recoverable 5.5-segment PBAN-fueled boosters (derived from current Ares I first stage)


Core Stage

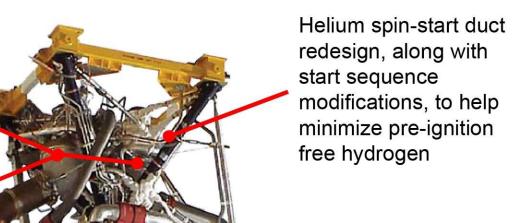
- Six Delta IV-derived RS-68B LOX/LH₂ engines (expendable)
- 10-m (33-ft) diameter stage
- Composite structures
- Aluminum-Lithium (Al-Li) tanks

Ares V Solid Rocket Booster (SRB)



Ares V Core Stage

RS-68 to RS-68B



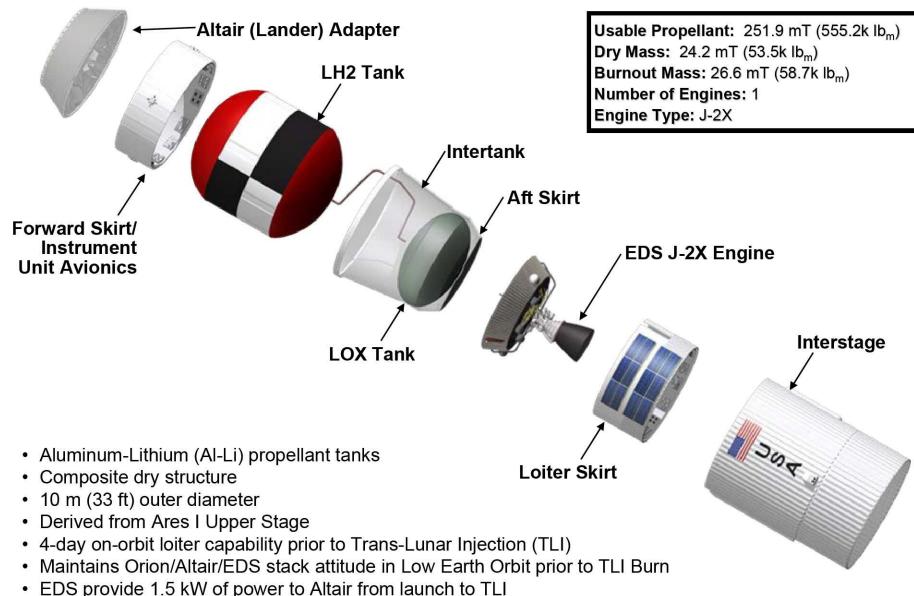
* Redesigned turbine nozzles to increase maximum power level by ≈ 2%

Redesigned turbine seals to significantly reduce helium usage for pre-launch

 Other RS-68A upgrades or changes that may be included:

- · Bearing material change
- New Gas Generator igniter design
- Improved Oxidizer Turbo Pump temp sensor
- · Improved hot gas sensor
- 2nd stage Fuel Turbo Pump blisk crack mitigation
- · Cavitation suppression
- · ECU parts upgrade

* Higher element density main injector improving specific impulse by ≈ 2% and thrust by ≈ 4%


Increased duration capability ablative nozzle

* RS-68A Upgrades

Ares V Earth Departure Stage

J-2X Engine

Used on Ares I and Ares V

Turbomachinery

• Based on J-2S MK-29 design

Gas Generator

 Based on RS-68 design

Engine Controller

 Based directly on RS-68 design and software architecture

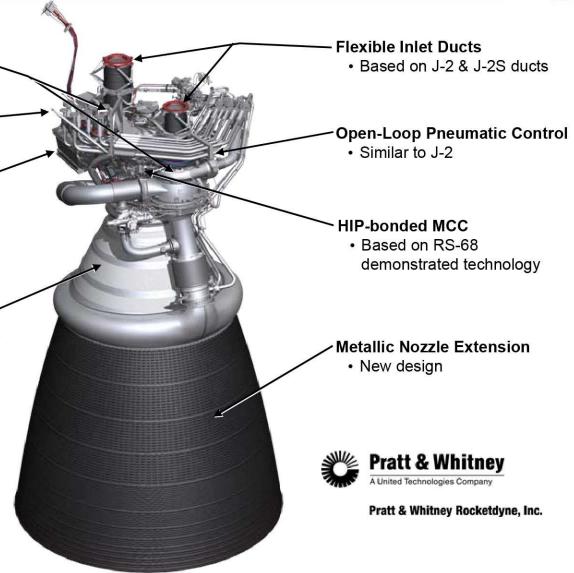
Regeneratively Cooled Nozzle Section

· Based on long history of RS-27 success

Mass: 2.5 mT (5,511 lbm)

Height: 4.7 m (15.4 ft)

Diameter: 3.05 m (10 ft)


Thrust: 1,308K N (294K lbm) (vac)

Isp: 448 sec (vac)

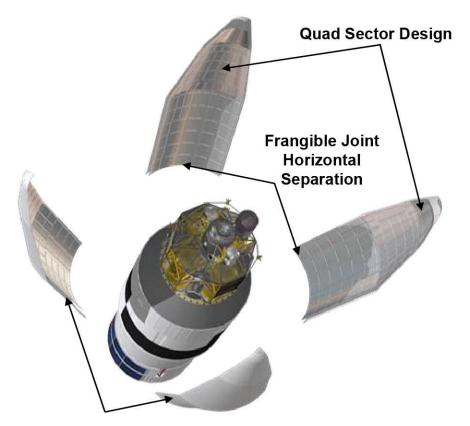
Operation Time: 500 sec.

Altitude Start / On-orbit Restart

Operational Life: 8 starts/ 2,600 sec

Payload Shroud Point Of Departure

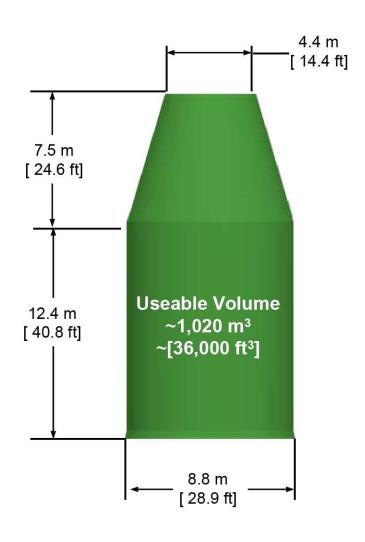
Point of Departure (Biconic)

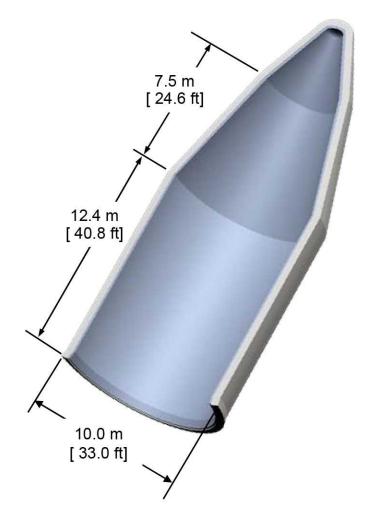


- Composite sandwich construction (Carbon-Epoxy face sheets, Al honeycomb core)
- Painted cork TPS bonded to outer face sheet with RTV
- Payload access ports for maintenance, payload consumables and environmental control (while on ground)

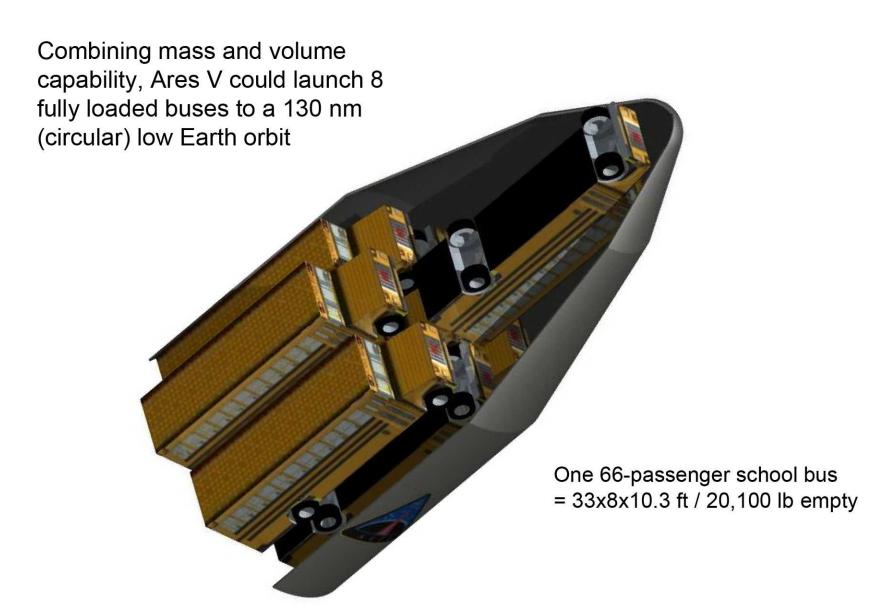
Mass: 9.1 mT (20.0k lbm)
POD Geometry: Biconic
Design: Quad sector

Barrel Diameter: 10 m (33 ft) Barrel Length: 9.7 m (32 ft) Total Length: 22 m (72ft)




Thrust Rail Vertical Separation System Payload umbilical separation

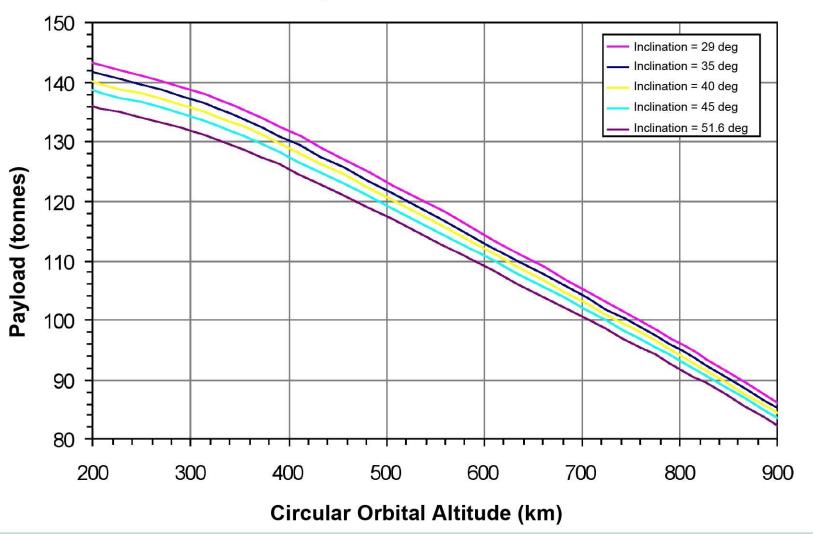
Current Ares V Shroud Concept



Visualizing the Possibilities

Ares V Performance for Selected Trajectories from KSC

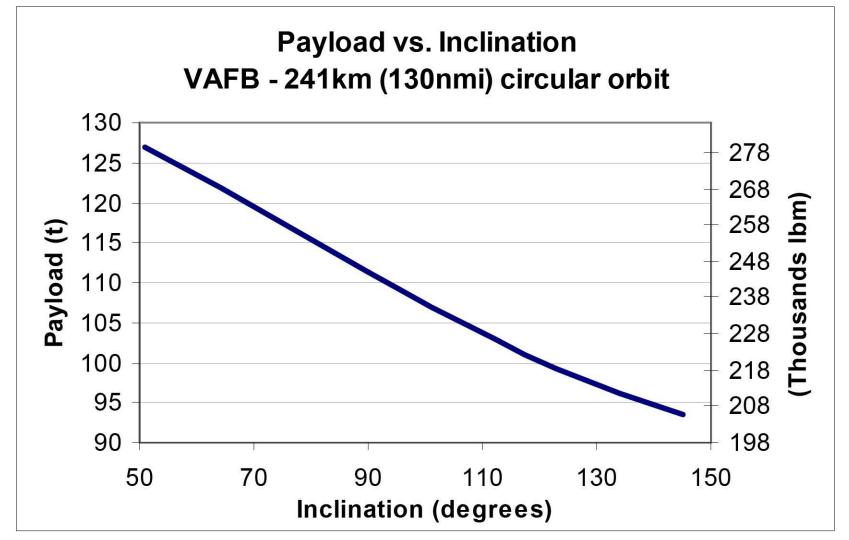
Mission Profile	T	Constellation	POD Shroud	Extended Shroud			
	Target	Payload (Ibm)	Payload (mt)	Payload (lbm)	Payload (mt)		
1) LEO (@29° inclination)	241 x 241 km	315,000	143	313,000	142		
2) GEO	Transfer DV 14,100 ft/s	77,000	35	76,000	34.5		
3) GTO Injection	Transfer DV 8,200 ft/s	153,000	69.5	152,000	69		
4) Sun-Earth L2 Transfer Orbit Injection	C3 of -0.7 km ² /s ²	124.000	56.5	123,000	56		
5) Earth-Moon L2 Transfer Orbit Injection	C3 of -1.7 km ² /s ²	126,000	57.0	125,000	57		
6) Cargo Lunar Outpost (TLI Direct), Reference	C3 of -1.8 km ² /s ²	126,000	57	125,000	57		
7) Mars Cargo (TMI Direct)	C3 of 9 km ² /s ²	106,000	48	105,000	48		



Ares V (51.00.39) LEO Performance

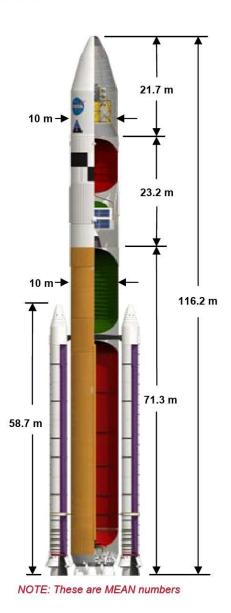
Previous POD Shroud

Ares V Payload vs. Altitude & Inclination


LEO performance for new Constellation point of departure vehicle (51.00.48) is expected to exceed values shown here.

Performance analysis will be updated for the 51.00.48 vehicle.

Ares V LEO Capability from VAFB


Approximate Performance – does not take into account land over-flight December 2007 51.02.06 Configuration

LCCR/MCR-Approved Point of Departure

- Vehicle 51.0.48 -

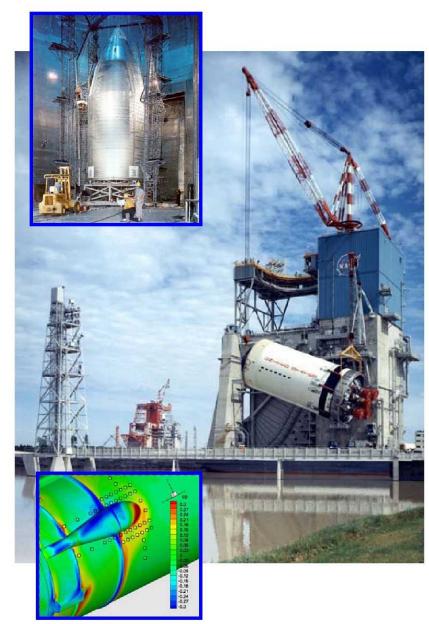
♦ Vehicle 51.0.48 approved in 2008

- 6 Engine Core, 5.5 Segment PBAN steel case booster
- Provides architecture closure with margin

Approved maintaining Vehicle 51.0.47 with composite HTPB booster as Ares V option

- Final decision on Ares V booster at Constellation Lunar SRR (2010)
- Additional performance capability if needed for margin or requirements
- Allows for competitive acquisition environment for booster

Near Term Plan to Maintain Booster Options


- Fund key technology areas: composite cases, HTPB propellant characterization
- Competitive Phase 1 industry concept definition proposals submitted early 2009.

Current Activities

- Ares V concept definition/requirements development industry proposals
- Structural test approach
- Structural test articles
- Ares V-Y flight test objectives
- Ares V aerodynamic characterization
- Manufacturing, test, and launch facilities
- Core Stage and EDS propulsion test approach and facilities assessment
- Technology prioritization
- Ares V Cost threat risk assessment
- Ares V performance risk assessment

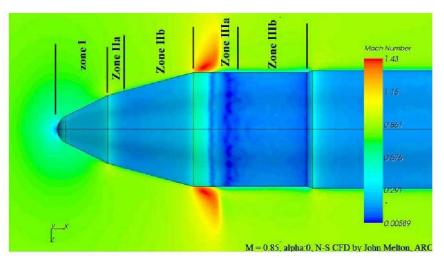
Conclusions

- ♦ Ares V current concept (51.00.48) exceeds Saturn V mass capability to trans lunar injection by almost 40% alone or almost 60% with Ares I
- ◆ This concept vehicle can meet current Human Lunar Return requirements with ~6 mT of margin
- 2009 activities focused on refining vehicle and operational concept, refining requirements, working with potential non-Constellation users to understand vehicle/payload benefits and design issues
- Ares V is sensitive to loiter time, attitude, power, and altitude requirements, in addition to payload performance
- Ares V is a national asset that can change today's rules for mass/volume or development cycle/cost.

www.nasa.gov/ares

Backup

Ares V Summary Schedule

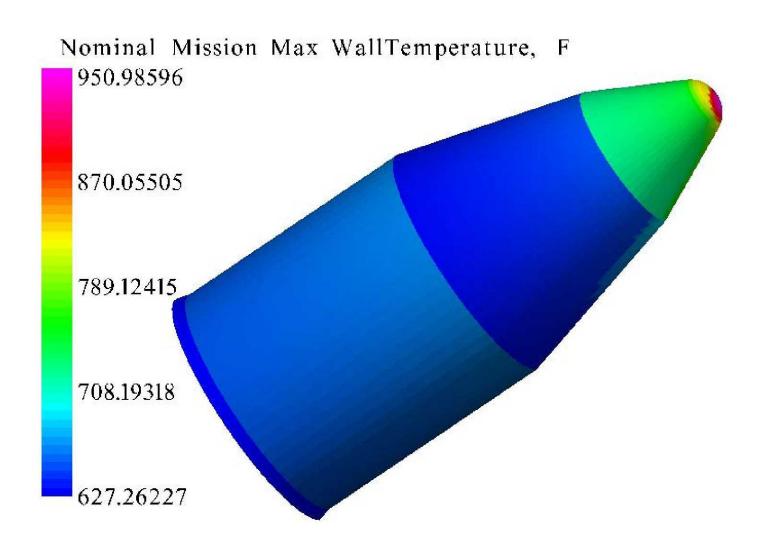

Ares V	2009	2010	2011	2012			014	2015	2016	2017	2018	2019	2020
7,1100 1	FY09	FY10	FY11	FY12	FY13	FY1	4	FY15	FY16	FY17	FY18	FY19	FY20
Level I/II Milestones		SR	R										
Altair Milestones (for reference only)			SRR V		PDR ▽			ct	OR 7			Altair 1 Altair 2	DCR Altair 3 Altair 4
Ares V Project Milestones			SRR	SDR/PNAF		PDR/N	NAR		c	ODR V	Ares V-Y	DCR	
Vehicle Integration	STUDY												
			DEF	INITION				DESIG	CA/	_			
	Concept Review	∇	∇			-		DESIG	314	DEV	ELOPMENT		
Engi	neering Assessment Ph A Cy	cle 3	CoDR									L OF	ERATIONS
		Phase A	Cycle 4	se B Cycle 1	<u> </u>								
			2-6	DAC 1	Phase B Cycle								
EDS Engine (J-2X)			SRR	PDR	CDR								
CS Engine (RS-68B)			У	V	∇		-						
CO Engine (NO-00D)			SRR	PDF	CDR		DC	R 7					
Core Stage				srr ▽	PDR				CDR				
Booster				SRR		DR 7			CDR				
Earth Departure Stage				SRI		PDR			CDR				
Payload Shroud				,	SRR	PDR			CDF	2			
Avionics and Software					SRR	PDR		33	СФ	7			
Systems Test							MPT	FA CS Start <mark>V</mark>	MPTA EDS Star				

Preliminary Aero-acoustic Analysis

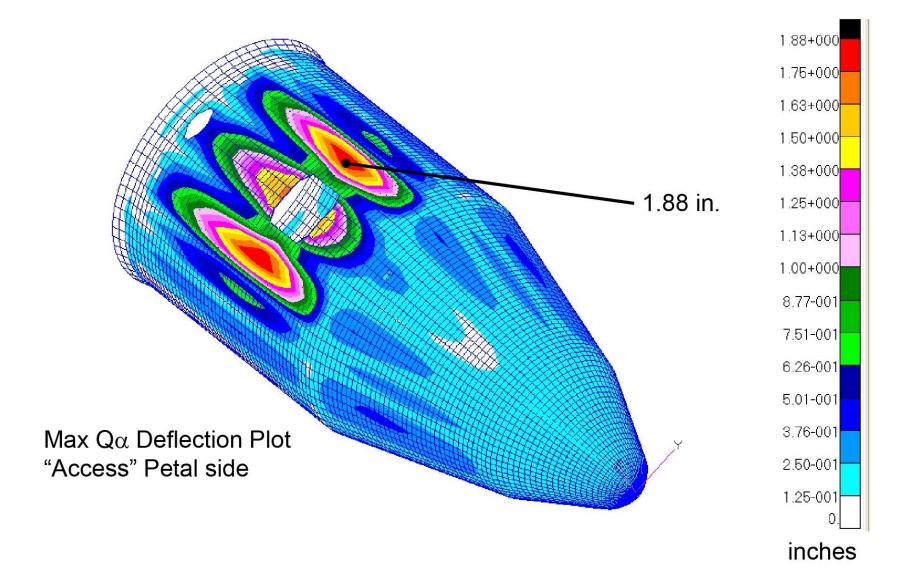
Transonic and Max-Q Acoustics

- Predicted ascent maxacoustic levels
- Conceptual design based on acoustic blanket thicknesses used on Cassini mission

Table I. Estimated max Overall Fluctuating Pressure Level (OAFPL) on Shroud external regions


Zone	I	lla	llb	IIIa	IIIb	
Criteria for Max OAFPL	Attached Turbulent Boundary Layer	Weak Transonic Shock	Attached Turbulent Boundary Layer	Strong Transonic Shock & Separation	Weak Transonic Shock	
Expected Mach # for max OAFPL	1.65	0.93	1.65	0.85	0.85	
Q (psf)	707	520	707	475	475	
Crms	0.007	0.07	0.007	0.12	0.035	
OAFPL (dB)	142	159	142	163	152	

Preliminary Aerothermal Analysis

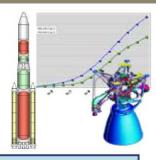


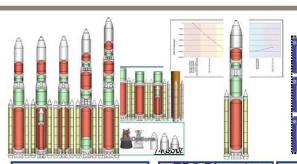
Preliminary Structural Analysis

Maximum Static Deflection

Ground Rules and Assumptions

- All trajectories analyzed using POST3D (Program to Optimize Simulated Trajectories - 3 Dimensional)
- Flight performance reserve is based on the Ares V LEO mission, and is held constant for all cases
- No gravity assists
- Interplanetary trip times are based on Hohmann transfers (limited to ~24 years max.)
- Payload mass estimates are separated spacecraft mass, and include payload adapter and any mission peculiar hardware (if required)
- Ares V vehicle based on configuration 51.00.39, but w/ Upper Stage burnout mass from configuration 51.00.34 (propellant tanks not resized for high C3 missions)
- For cases incorporating a kick stage:
 - Ares I and Ares V employ 2-engine Centaur from Atlas V
 - Additional adapter mass of 6,400 lbm assumed
 - No adjustments to aerodynamic data
- Propellant mass for:
 - Ares V LEO missions: held constant at 310,000 lbm
 - Ares I and V C3 missions and Ares I LEO missions: maximum propellant load
- ♦ No Upper Stage propellant off-loading for Ares I and Ares V C3 cases
- ◆ Transfer orbit to Sun-Earth L2 point is a direct transfer w/ C3 = -0.7 km2/s2
 - Payload can be increased by using a lunar swingby maneuver
- All cases targeting a C3 are of longer duration than the J-2X constraint of 500 seconds




ESAS (2005) to LCCR (2008) Major Events

Original ESAS Capability

- 45.0 mT Lander
- 20.0 mT CEV
- No Loiter in LEO
- 8.4m OML
- 5 SSMEs / 2J2S

CY-06 Budget Trade to Increase

- Ares I / Ares V Commonality
- ·Ares I: 5 Sea RSRB / J2-X instead of Air-Start SSMF
- •Ares V: 1 J2-X

Detailed Cost Trade of SSME vs RS-68

- •~\$4.25B Life Cycle Cost Savings for
- •5 Engine Core
- Increased Commonality with Ares I Booster
- •30-95 Day LEO Loiter Assessed

IDAC 3 Trade Space

- Lunar Architecture Team 1/2 (LAT) Studies
- Mission Delta V's increased
- Increase Margins From TLI Only to Earth through TLI
- Loiter Penalties for 30 Day Orbit Quantified

EDS Diameter Change from 8.4m to 10m

- Lunar Architecture Team 1/2 (LAT) Studies
- · Lunar /Mars Systems Benefits
- Tank Assembly Tooling Commonality

Incorporate Ares I Design Lessons Learned / **Parameters**

- Core Engine / SRB Trades to Increase **Design Margins**
- •Increase Subsystem Mass Growth Allowance (MGA)

Recommended Option

- 6 Core Engines
- 5.5 Seament **PBAN**

Updated Capability 45.0t Lander

- 20 2t CFV
- ~6t Perf. Margin
- 4 Day LEO Loiter
- Ares I Common **MGAs**
- **Booster Decision** Summer 2010

220 Concepts Evaluated

320 Concepts Evaluated

730 Concepts Evaluated

460 Concepts Evaluated

2006

2007

2008

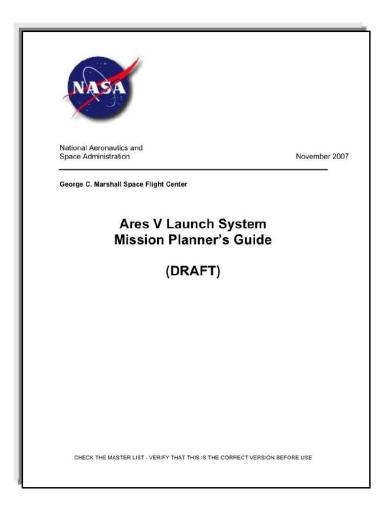
2005

Ares I ATP

Orion ATP

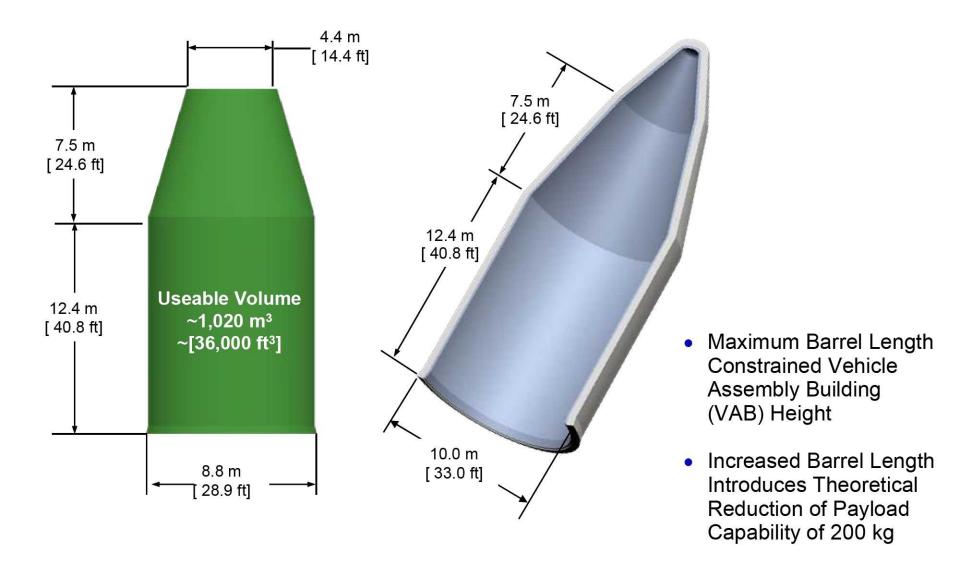
Ares I SRR

Orion SRR


Ares I SDR

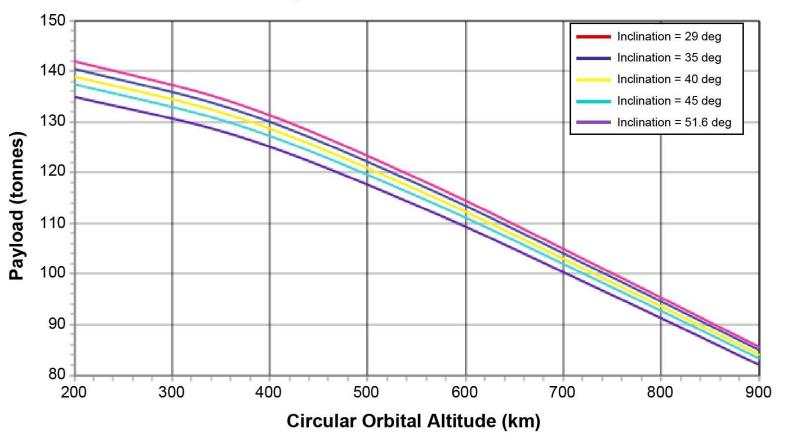
Ares V MCR

Ares V Launch System Mission Planner's Guide


Mission Planner's Guide In Development

- Interface Definitions
 - Fairings, Adapters...
- Mission Performance
- Development Timelines
- Concept of Operations
- Potential Vehicle Evolution and Enhancements
- Need Past Astronomy Mission Data
- Based on 51.00.39 concept

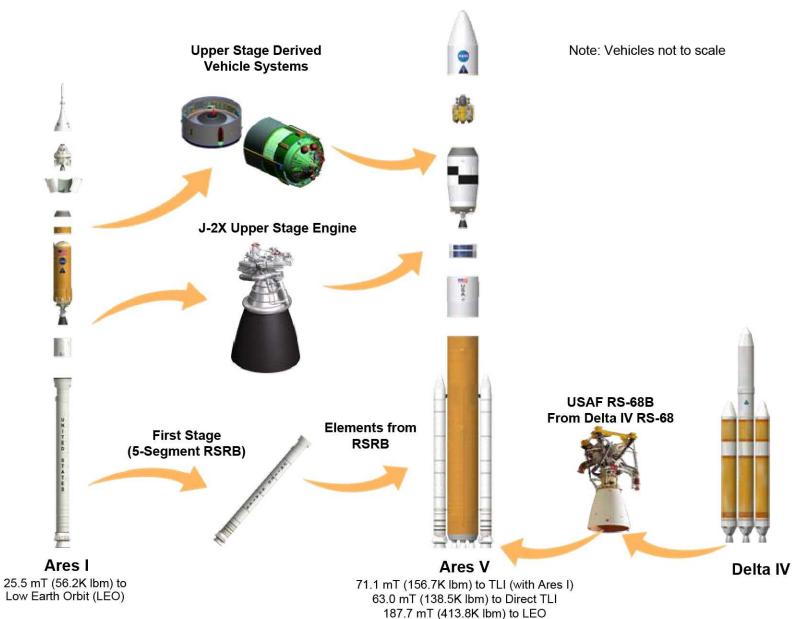
Notional Ares V Shroud for Other Missions



Ares V LEO Performance

Extended Shroud

Ares V Payload vs. Altitude & Inclination


LEO performance for new Constellation point of departure vehicle (51.00.48) is expected to exceed values shown here.

Performance analysis will be updated for the 51.00.48 vehicle.

Employing Common Hardware to Reduce Operations Costs

